Chapter 6
Turing Machines

Turing Machines

dTuring machines (TMs) were introduced
by Alan Turing in 1936

dThey are more powerful than both
finite automata and pushdown automata.
In fact, they are as powerful as any
computer we have ever built.

The Language Hierarchy

a'b" " ?

Context-Free Languages
a"b"

Regular Languages
a* gxpx

Languages accepted by
Turing Machines

a'b"c"

Context-Free Languages
a"b"

Regular Languages
a* o gxp%

Basic design of Turing machine
Tape

|

Read-Write head
Control Unit

The Tape

No boundaries -- infinite length

T

Read-Write head

The head moves Left or Right

T

Read-Write head

The head at each time step:

1. Reads a symbol
2. Writes a symbol
3. Moves Left or Right

TM instructions (transition functions)

Each Turing machine instruction contains the
following five parts:

 The current machine state.

A tape symbol read from the current tape
cell.

A tape symbol to write into the current tape
cell.

[The next machine state.
1 A direction for the tape head to move.

Two inputs, three outputs: T(i, a) = (b, j, R)

al| bk

1. Reads a
2. Writes k
3. Moves Left

1. Reads b
2. Writes [
3. Moves Right

10

The Input String

Input string Blank symbol
[A N /

A b Al C | L Ll L] eeeee
head

Head starts at the leftmost position
of the input string

Input string Blank symbol
[= N /
A b Al C | Ll L] eeeee

|

head

Remark: the input string is never empty

States & Transitions

Read Write Move Left

Move Right

(a,b,R

©

13

Example:

q1
current state

DR

14

15

16

Determinism

Turing Machines are deterministic

Allowed Not Allowed

(a.b, R) (a.b, R)

(a0 (a0
(b,d,L) @ (a,d,L) @

18

Partial Transition Function

Example:
a b Al C | | || eeeee
|
91

(a,b,R) Allowed:

No transition
for input symbol ¢

19

Halting

The machine halts if it arrives at the
accepting states or if there are
no possible transitions to follow.

20

Example:

No possible transition

HALTII

21

Final States

@ Allowed
Not Allowed

* Final states have no outgoing transitions

- In a final state the machine halts

22

Accept Input

Reject Input

Acceptance

>

>

Tf machine halts
in a final state

If machine halts

in a hon-final state
or

If machine enters

an infinite loop

23

Turing Machine Example

A Turing machine that accepts the language:

aa ™

(a,a,R)

q90 (== L)

24

Time O

Time 1

Time 2

Time 3

28

Time 4

(a,a, K) Halt & Accept

q0 (2= D)

29

Rejection Example

Time O

30

Time 1

No possible Transition

(a.a.R) Halt & Reject

90 (2= D)

31

Infinite Loop Example

A Turing machine
for language aa™*+b(a+b)*

(b,b, L)
(a,a,R)

q90 (= L)

32

Time O

33

Time 1

34

Time 2

35

Time 2

Time 3

Time 4

Time b

doo| 241u1jug

36

Because of the infinite loop:
-The final state cannot be reached
*The machine never halts

*The input is not accepted

37

Formal Definitions
for
Turing Machines

Turing Machine:

Input
alphabet

-

\

Tape
alphabet

M (Q 2 F 5 qO’ qacc’ qre]

Transition

function

Initial
state

Accept state

Reject state

39

Transition Function

5(Q19a) — (QZabaR)

40

Transition Function

()52

5(Q1) C) — (Q2) daL)

41

Example : Consider aTuring machine with following
Transitions:

* 3(90.a)=(q;.a,R)
* 8(qo.b)=1(q,.b,R)
* 8(90..4) = (q; ., R)
* 8(q;,a)=(q0.a, L)
* 8(q;,b)=(q0.b, L)
* 8(9; ,.) = (90 s, R)

What does this Turing machine do?

42

Configuration

Instantaneous description:

ca qy ba

43

TM configurations
* The configuration of a Turing machine is

the current setting i.e.
- Current state)
- Current tape contents

- Current head location

>

These three items are a
configuration of the TM

- Configurations are represented in a special way:
- When the TM is in state g, and
- The contents of the tape is two strings uv, and
- The head is on the leftmost position of string v

- Then we represent this configuration as "u g v “- this
string is the Instantaneous Description (ID).

44

Configurations of TMs

+ Example: 1011¢,011111

a7

45

Instantaneous Descriptions of a
Turing Machine

d Initially, a TM has a tape consisting
of a string of input symbols
surrounded by an infinity of blanks in
both directions.

d The TM is in the start state, and the
head is at the leftmost input symbol.

46

Standard Turing Machine

The machine we described is the standard:

+ Deterministic
» Infinite tape in one directions

*Tape is the input/output file

47

Construction of Turing Machines

48

Example T
* Given: w is a bitstring

» Construct TM that accepts the language
L ={w: w contains at least two Os}

49

Example I (Cont'd)

1> 1,R 1> 1,R

Q '
0—>0,R

50

Example IT

» Construct TM that accepts the
language
L={a"b": n>1}

51

Design
* Check first symbol isan a

- If not, then reject

- If so, replace with X (to mean counted) and begin
recursion

* Move to the right all the way to the first unread

b, and mark it with Y

* Move back (to the left) all the way to the last
marked X, and then move one position to the
right.

+ If the next position is a, then go to step 2.
+ Else move all the way to the right to ensure there

are no excess bs. If not move right to the next
blank symbol and stop & accept.

52

Example IT

Turing machine for the language {a”"b"}

y—=),R y—=>y,L
y—>), R a—>a,R a—)aL

Q uﬁuL
b—> v,
’QI y
xX—>X,R

Time O alal'b| bl

Time 1

Time 2

Time 3

92
y=>yR oyl
J/—)J/aR/ a—>a,R Ca—al
Q —> X, R b—y,L
s @

57

Time 4

T|m€5 xaybul_l

Time 6

y—>), R
%u,L
Y=y a

a—a,R

y—=>y,L
a—a,lL

, —> X, R b— y,L
D 8% !
\T/ xX—>x, R

Time /

Time 8

y—>y,R
<>/ﬁu,L
y—=>) a

y—=>)R
a—a,R

SEFN>

a—a,lL

, —> X, R b— y,L
D »gql !
\T/ xX—>x, R

Q
92

Time 9 x|\ x|yl ylo] o

Time 10

y—>y,R y—oyL
a—a,R a—a,lL

R b—> ,L<>
90 < 611; =
\T/ xX—>x, R

Time 11

%)
y =)

y—=>)R
a—a,R

y—=>y,L
a—a,lL

: a— x,R b—y,L
T »gql !
\T/ xX—>x, R

Time 12 x|\ x|yl yvlolo

Time 13 x| x| yly

I

q4
Halt & Accepf

y—=),R y—=>y,L
y—>), R a—>a,R a—)aL

Q “L
b—> v,
’QI y
xX—>X,R

Observation:

If we modify the
machine for the language {a"b"}

we can easily construct
. nin _n
a machine for the language 4 b c"}

68

Turing Languages

Recursively Enumerable
and
Recursive Languages

70

Definition: Let M = (Q, Z, T, 8, qo, Gy, Gre;)

be a TM, and let w be a string in Z*. Then
w is accepted by M iff

QoW |—* a; q¢ a;
where q; is in F and a; and a, are in '™

Definition: Let M = (Q, Z, T, 8, 9o, Gacc, Gre;)
be a TM. The language accepted by M
denoted L(M), is the set

{w|wisinZ* and w is accepted by M}

71

Notes:

- If x is not in L(M) then M may enter an
infinite loop, or halt in a non-final state.

- Some TMs halt on all inputs, while others

may not. In either case the language
defined by TM is still well defined.

72

Definition:
A language is recursively enumerable
if some Turing machine accepts it

73

Let L be arecursively enumerable language

and M the Turing Machine that accepts it

For string w:

if wel then M halts ina final state

if we&l +then M halts in a non-final state

or loops forever

74

This definition implies only that there exists
a TM M, such that for every wel,

*
Qo W |-* X1 ¢ X5

The definition says nothing about what
happens for wgl;

.1t may be that the machine halts ina
non- final sate or it never halts and goes
into an infinite loop.

75

Definition:
A language is recursive

if some Turing machine accepts it
and halts on any input string

In other words:
A language is recursive if there is
a membership algorithm for it

76

Let L be arecursive language

and M the Turing Machine that accepts it
For string w:
if wel then M haltsina final state

if w&l +then M haltsin a non-final state

77

What do you think is the advantage of
being recursive language over recursively
enumerable language?

Assuming you are presented a string w,
and you would like to know whether w is in

the language.

78

Examples of Recursively Enumerable Languages

= | = {w e {a, b}* : w contains at least one a}

= | = {w e {a, b}* : w contains a double a}

79

Non- Recursively Enumerable

Recursively Enumerable

80

Notes:

The set of all recursive languages is
a subset of the set of all recursively
enumerable languages

A TM is not recursive or recursively
enumerable, rather a language is
recursive or recursively enumerable.

81

